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Abstract: Adventitious root (AR) formation is a key step in stem cutting propagation of economi-
cally important woody ornamentals. Inadequate environmental and hormonal conditions can lead 
to the production of an insufficient or modest number of ARs in stem cutting, with a consequent 
decrease in quality. The aim of this research was to optimize wild sage and glossy abelia autumn 
stem cutting propagation protocols, using image analysis to assess the effects of different IBA con-
centrations and cultivars on AR quality. For both taxa, the treatments were: four IBA concentrations: 
0, 1250, 2500 and 5000 mg L−1 and two cultivars: ‘Little Lucky’ (cv1) and ‘Yellow’ (cv2) from Lantana, 
and ‘Canyon Creek’ (cv1) and ‘Eduard Goucher’ (cv2) from Abelia. Results show that IBA applica-
tion is not needed to enhance rooting ability; however, IBA concentration is an important factor 
determining the best overall AR quality in both taxa. In wild sage applying 5000 mg L−1 IBA im-
proved AR quality in ‘Little Lucky’, increasing the root number, total length, surface area and num-
ber of forks and crossings, but decreased quality in ‘Yellow’. In glossy abelia ‘Edouard Goucher’, 
5000 mg L−1 IBA increased the root number, but 1250 mg L−1 IBA improved AR quality; ‘Canyon 
Creek’ did not perform as well as cv2 at these concentrations. This study confirms that sensitivity 
to IBA dosage varies among species and their cultivars. Findings may help the commercial nursery 
industry produce higher quality cuttings. 

Keywords: Abelia x grandiflora; exogenous plant growth regulators; Lantana camara; root morpho-
logical characterization; woody plants 
 

1. Introduction 
Woody species can be propagated using two different methods: vegetative multipli-

cation, which produces clones, and sexual reproduction [1,2]. Seed germination may be 
poor or erratic due to dormancy [3]; moreover, the viability of seeds is very low [4]. In the 
horticultural industry, vegetative propagation is the most popular method, as it is 
cheaper, easier and faster than sexual reproduction [5]; the plants produced are clones 
that maintain the morpho-physiological and genetic characteristics of the stock plants, 
uniformity and earliness of production [6]. 

A number of techniques may be adopted in the vegetative propagation of woody 
plants. Although layering is a simple technique, it is expensive and produces a small num-
ber of clones [7]. Grafting guarantees adaptability to unfavorable pedoclimatic conditions 
and resistance to telluric pathogens and parasites, but it is costly and labor-intensive, and 
compatibility problems may arise between graft and rootstock [8–10]. In-vitro propaga-
tion allows the production of a large number of plants in a very short time [11,12]; how-
ever, this technique requires equipped laboratories and skilled labor [13]. Moreover, 
many woody species are recalcitrant to adventitious rooting from stem cuttings, even if 
they are micro-propagated [14]. Propagation by stem cutting, less expensive and easier 
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than in-vitro propagation, is the method most widely used to propagate clones of forest, 
fruit and shrub species [15–17]. 

Adventitious root (AR) formation is a key step in stem cutting propagation [18,19] of 
economically important woody ornamentals [20]. Inadequate environmental and hormo-
nal conditions can lead to the production of an insufficient or modest number of AR in the 
stem cutting, with consequent loss of quality. Moreover, AR quality is characterized by a 
high number of very fine roots, which are essential for continuous access to water and 
nutrients [21] and can help the plant withstand transplant shock, increasing survival and 
plant growth [22–24] and by an adequate number of higher calibre roots with mechanical 
support function. Generally, the application of specific hormones to woody species can 
enhance AR quality, as number of roots and length development [25,26]; moreover, they 
can improve the plant material in so far that the cuttings develop more roots in a shorter 
time. Rooting hormones can improve rooting in some species but may have little effect on 
others [27]; furthermore, the specific stimulant and its concentration can affect uptake and 
subsequent adventitious rooting of stem cuttings: indole-3-butyric acid (IBA) is the most 
widely used auxin in the ornamental nursery industry [28]. 

In recent years, commercial ornamental nurseries in the European and Mediterra-
nean Plant Protection Organization (EPPO) region have shown considerable interest in 
successful vegetative protocols for taxa that do not host Xylella bacterium, such as Lantana 
and Abelia. 

Lantana camara L. (Verbenaceae), also known as wild sage, is native to tropical, sub-
tropical and temperate regions [29]; it is a small vigorous shrub [30] of ornamental interest 
due to its attractive dense foliage and multi-colored flowers. Low-maintenance cultivars 
such as ‘Little Lucky Red’ (Ball Flora Plant) and ‘Bandana Yellow’ (Syngenta) are perfect 
for pot-tight production. 

Abelia x grandiflora (Andrè) Rehd., (Caprifoliaceae) as glossy abelia, a hybrid between 
A. chinensis and A. uniflora [31], is a semi-evergreen, sprawling shrub with red-tinged 
leaves and multiple stems. It is used as a shrub border or hedge. A limited number of 
cultivars of A. x grandiflora are commercially available [32], among which the following 
are cultivated in Mediterranean countries: ‘Canyon Creek’ (A. chinensis x A. x grandiflora) 
and A. ‘Edward Goucher’ (A. x grandiflora x schumanii). Commercially, A. x grandiflora is 
propagated through semi-hardwood cuttings. 

For these taxa, the literature dealing with IBA concentrations in relation to AR quality 
is still scarce and confusing, and further study is required to improve AR quality. Wild 
sage may asexually reproduce through stem softwood cuttings in spring or summer [33]. 
Researchers at the University of Florida found that semi-woody cuttings taken at the be-
ginning of summer and treated with 8000 ppm IBA rooted successfully [34]. Instead, 
Blythe et al. [35] found that cuttings taken at the end of May and treated with 1000 ppm 
potassium salt of IBA yielded the best rooting results. 

Moreover, despite its importance, AR quality and morphology are rarely considered 
in ornamental woody plants research applying image analysis software. 

The aim of this study was to optimize wild sage and glossy abelia autumn stem cut-
ting propagation protocols, using image analysis to assess the effects of different IBA con-
centrations and cultivars on AR quality. 

2. Results 
In general, the results of this study clearly show that vegetative propagation of wild 

sage and glossy abelia via semi-hardwood stem cuttings taken in early autumn is possible. 
Under our experimental conditions, ANOVA revealed no statistically significant interac-
tion among IBA concentration and cultivar for rooting ability (%) in both taxa, with abso-
lute values higher than 80%. Synthetic hormone application is not required to enhance 
rooting ability, although it does improve AR quality. 

The interaction effect of IBA concentration and cultivar on the number of roots per 
cutting was significant at p ≤ 0.05. Table 1 shows that in both wild sage cultivars at 20 
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DAC, the best response was obtained by applying 5000 mg L−1 IBA (cv1 15 roots and cv2 
17 roots); in glossy abelia, cv2 produced the highest number of roots per cutting (27) when 
treated with 5000 mg L−1 IBA, whereas the same dose produced a 27% decrease in cv1 
(19.6 roots). 

Table 1. Number of roots per cutting in wild sage and glossy abelia at 20 DAC, according to IBA 
concentration and cultivar. 

TMTS 
Roots Per Cutting (No.) 

L. camara A. x grandiflora 
IBA (mg L−1) cv1 cv2 cv1 cv2 

0 3.0 ± 0.3 d 7.6 ± 1.2 c 6.6 ± 0.9 d 1.3 ± 0.3 e 
1250 9.0 ± 0.6 bc 7.3 ± 0.7 c 9.3 ± 1.3 d 11.7 ± 1.2 c 
2500 6.0 ± 0.6 c 11.0 ± 0.6 b 6.3 ± 0.9 d 23.0 ± 1.7 b 
5000 15.0 ± 0.6 a 17.0 ± 1.1 a 19.6 ± 0.7 b 27.0 ± 1.5 a 

L. camara cultivars: cv1 ‘Little Lucky’, cv2 ‘Yellow’; A. x grandiflora cultivars: cv1 ‘Canyon Creek’, 
cv2 ‘Edouard Goucher’. Within each taxon, data followed by the same letter are not significantly 
different at p ≤ 0.05 according to the Student Newman–Keuls (SNK) test. Data shown are means ± 
SE of three replicates. In this table and in the following tables and figures, DAC = Days After Cut-
ting. 

When the IBA concentration x cultivar interaction was examined for significance, all 
AR morphological traits that make up the quality, significantly differed at the 5% level, 
suggesting that the effects of IBA treatments on root length, surface area, diameter and on 
number of tips, forks and crossings differed with variety. 

As for total root length in wild sage, the interaction effect of IBA concentration and 
cultivar was significant at the three sampling dates (Figure 1A,B). At 20 DAC, the highest 
value (366 mm) was recorded in cv1 treated with 5000 mg L−1 IBA; in contrast, the same 
dose had little effect on cv2 root length (158 mm). In the interaction effect, cv2 cuttings 
treated with 1250 mg L−1 IBA reached a length of only 208 mm (Figure 1B). At both 35 and 
50 DAC, cv1 cuttings treated with 5000 mg L−1 IBA reached statistically significant maxi-
mum values, at 433 (+33%) and 748 mm (+105%), respectively, compared to cv2. When 
treated with the same dose, cv2 cuttings reached a root length of 325 mm (35 DAC) and 
364 mm (50 DAC). The total root length value, at 50 DAC, of glossy abelia treated with 
1250 mg L−1 IBA was significantly higher at twice that in cv2 (1624 mm) as compared to 
cv1 (861 mm) (Figure 1C,D). 
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Figure 1. Total root length at three sampling dates in two L. camara cultivars ((A) ‘Little Lucky’, (B) 
‘Yellow’) and in two A. x grandiflora cultivars ((C) ‘Canyon Creek’, (D) ‘Edouard Goucher’) treated 
with different IBA concentrations (n = 8). Different letters denote significant differences (p ≤ 0.05) 
among treatments for the same sampling date. Data shown are means ± SE of three replicates. 

In the interaction effect, at the three sampling dates, 5000 mg L−1 IBA concentration 
applied to wild sage cv1 (Figure 2A) showed the statistically highest root surface area 
values (76, 105 and 113 mm2, respectively); at the same concentration (Figure 2B), cv2 val-
ues were always lower than cv1 values (44, 63 and 74 mm2, respectively). Therefore, at the 
end of cutting cycle, at 5000 mg L−1 IBA, cv1 performance increased by 53% compared to 
cv2. IBA x cultivar interaction significantly affected surface area in glossy abelia: the larg-
est root surface area was obtained in cv2 treated with 1250 mg L−1 IBA (Figure 2D): 135 
and 134 mm2 at 20 and 35 DAC respectively; at the same concentration (Figure 2C), cv1 
values were always lower than cv2 values (51 and 114 mm2 respectively). At 50 DAC, 1250 
and 5000 mg L−1 IBA doses applied to cv2 cuttings had the highest root surface area values 
(205 and 202 mm2 respectively); in contrast, the same concentrations caused cv1 cuttings 
to decrease by 28 and 37% (Figure 2C). 
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Figure 2. Root surface area at three sampling dates in two L. camara cultivars ((A) ‘Little Lucky’, (B) 
‘Yellow’) and two A. x grandiflora cultivars ((C) ‘Canyon Creek’, (D) ‘Edouard Goucher’) treated 
with different IBA concentrations (n = 8). Different letters denote significant differences (p ≤ 0.05) 
among treatments for the same sampling date. Data shown are means ± SE of three replicates. 

As for root diameter (Table 2) in wild sage, interaction was not significant at three 
sampling dates; in glossy abelia, at 50 DAC, the 5000 mg L−1 IBA concentration had the 
same effectiveness in both cultivars, showing a maximum value of 0.57 mm in cv1 and of 
0.54 mm in cv2. In this cultivar, the 1250 mg L−1 IBA dose had the smallest diameter. 

Table 2. Root diameter in wild sage and glossy abelia at 50 DAC, according to IBA concentration 
and cultivar. 

TMTS 
Root Diameter (mm) 

L. camara A. x grandiflora 
IBA (mg L−1) cv1 cv2 cv1 cv2 

0 0.41 ± 0.03 a 0.33 ± 0.02 a 0.40 ± 0.03 cd 0.44 ± 0.02 cd 
1250 0.49 ± 0.05 a 0.43 ± 0.02 a 0.49 ± 0.02 bc 0.37 ± 0.03 d 
2500 0.46 ± 0.02 a 0.33 ± 0.01 a 0.51 ± 0.01 b 0.41 ± 0.03 cd 
5000 0.42 ± 0.01 a 0.35 ± 0.02 a 0.57 ± 0.03 a 0.54 ± 0.02 a 

L. camara cultivars: cv1 ‘Little Lucky’, cv2 ‘Yellow’; A. x grandiflora cultivars: cv1 ‘Canyon Creek’, 
cv2 ‘Edouard Goucher’. Within each taxon, data followed by the same letter are not significantly 
different at p ≤ 0.05 according to the Student Newman–Keuls (SNK) test. Data shown are means ± 
SE of three replicates. 
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In our experiment, IBA concentration and cultivars interaction significantly affected 
root tips number per cutting in wild sage and glossy abelia at 20, 35 and 50 DAC (Table 
3). At 20 DAC, 5000 mg L−1 IBA was the most effective dose in both wild sage cultivars, 
although cv1 showed a better response (111 tips), differing statistically from cv2 (73 tips). 
At 35 DAC, 5000 mg L−1 IBA was again the optimal dose in both cultivars (cv1 103 tips and 
cv2 95 tips). At the end of the rooting cycle (50 DAC), the effectiveness of the 5000 mg L−1 
IBA dose was confirmed in both cultivars, respectively with 272 tips in cv1 and 335 tips in 
cv2. As for glossy abelia, the cv2 cuttings, treated with 1250 mg L−1 IBA, reached statisti-
cally different and higher number of tips compared to the other treatments: 401 at 20 DAC, 
542 at 35 DAC, 819 tips at 50 DAC. On the contrary cv1, at 50 DAC, cv1 showed a 58% 
decrease compared to cv2 with the same dose. 

Table 3. Number of root tips per cutting in wild sage and glossy abelia at 20, 35 and 50 DAC, ac-
cording to IBA concentration and cultivar. 

TMTS 

Root Tips (No.) 
DAC 

20 35 50 20 35 50 
L. camara A. x grandiflora 

IBA (mg 
L−1) 

cv1 cv2 cv1 cv2 cv1 cv2 cv1 cv2 cv1 cv2 cv1 cv2 

0 
36  

± 1 e 
35  

± 3 e 
59  

± 7 bc 
60  

± 1 bc 
225  

± 20 b 
141  

± 1 d 
133  
± 6 e 

92  
± 6 f 

195  
± 27 c 

310  
± 3 b 

288  
± 15 d 

649  
± 16 b 

1250 
38  

± 4 e 
40  

± 1 e 
51  

± 2 c 
65  

± 2 bc 
237  

± 17 b 
175  
± 2 c 

255  
± 10 bc 

401  
± 41 a 

295  
± 13 b 

542  
± 13 a 

343  
± 46 cd 

819  
± 2 a 

2500 
57  

± 1 c 
49  

± 2 d 
61  

± 2 bc 
75  

± 2 b 
242  

± 20 b 
198  

± 4 bc 
180  

±8 de 
264  

± 8 bc 
322  

± 9 b 
390  

± 7 b 
452  

± 40 c 
706  

± 12 b 

5000 
111  
± 3 a 

73  
± 4 b 

103  
± 5 a 

95  
± 2 a 

272  
± 15 ab 

335  
± 4 a 

324  
± 10 b 

217  
± 10 cd 

329  
± 8 b 

366  
± 40 b 

354  
± 40 cd 

724  
± 5 b 

L. camara cultivars: cv1 ‘Little Lucky’, cv2 ‘Yellow; A. x grandiflora cultivars: cv1 ‘Canyon Creek’, 
cv2 ‘Edouard Goucher’. Within each sampling date (20, 35 and 50 DAC) and for each taxon, data 
followed by the same letter are not significantly different at p ≤ 0.05 according to the Student New-
man–Keuls (SNK) test. Data shown are means ± SE of three replicates. 

As expected, significant differences were observed in IBA x cultivar interaction with 
respect to the number of root forks (Table 4). At 20 DAC, the application of IBA to both 
wild sage cultivars resulted in a greater number of forks than in the untreated control. 
Values for cv1 cuttings treated with IBA 5000 mg L−1 (385 forks) were more than double 
those for cv2 (152 forks). At 35 and 50 DAC, cv1 treated with IBA 5000 mg L−1 showed 
comparable strong effects at 458 (+103%) and 570 forks (+125%), respectively, compared 
to cv2. At 20 DAC, 1250 mg L−1 IBA applied to cv2 glossy abelia cuttings influenced the 
number of forks significantly (566); in contrast, the same IBA dose applied to cv1 results 
in only 207 forks. This trend was maintained at 35 DAC, and it was confirmed at 50 DAC: 
1250 mg L−1 IBA produced only 398 forks in cv1 (-63%), but a significantly higher value of 
1078 forks in cv2 (Table 4). 
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Table 4. Number of root forks per cutting in wild sage and glossy abelia at 20, 35 and 50 DAC, 
according to IBA concentration and cultivar. 

TMTS 

Root Forks (No.) 
DAC 

20 35 50 20 35 50 
L. camara A. x grandiflora 

IBA (mg 
L−1) 

cv1 cv2 cv1 cv2 cv1 cv2 cv1 cv2 cv1 cv2 cv1 cv2 

0 
69  

± 4 f 
93  

± 2 e 
239  
± 8 c 

130  
± 3 e  

387  
± 10 c 

175  
± 2 f 

113  
± 9 d 

89  
± 18 d 

212  
± 15 c 

102  
± 6 d 

183  
± 44 e 

683  
± 20 b 

1250 
133  

± 2 d 
120  

± 3 d 
353  

± 16 b 
155  

± 1 de 
384  

± 13 c 
206  

± 2 ef 
207  

± 16 c 
566  

± 31 a 
268  

± 5 b 
367  

± 17 a 
398  

± 11 d 
1078  
± 23 a 

2500 
176  

± 6 b 
129  

± 4 d 
327  

± 20 b 
174  

± 1 d 
492  

± 16 b 
227  

± 2 de 
191  

± 28 c 
357  

± 21 b 
272  

± 33 b 
372  

± 3 a 
231  

± 44 e 
576  

± 12 c 

5000 
385  

± 12 a 
152  
± 3 c 

458  
± 18 a 

225  
± 1 c 

570  
± 25 a 

253  
± 2 d 

201  
± 11 c 

250  
± 15 c 

407  
± 35 a 

442  
± 15 a 

375  
± 59 d 

1142  
± 4 a 

L. camara cultivars: cv1 ‘Little Lucky’, cv2 ‘Yellow; A. x grandiflora cultivars: cv1 ‘Canyon Creek’, 
cv2 ‘Edouard Goucher’. Within each sampling date (20, 35 and 50 DAC) and for each taxon, data 
followed by the same letter are not significantly different at p ≤ 0.05 according to the Student-New-
man–Keuls (SNK) test. Data shown are means ± SE of three replicates. 

The interaction effect of IBA concentration and cultivar with respect to the number 
of root crossings is shown at the three sampling dates in Table 5. Results highlight differ-
ences among the cultivars when 5000 mg L−1 IBA was applied to the wild sage cuttings: 
cv1 showed the highest number of crossings, at 45, 49 and 90, respectively, with increases 
compared to the cv2 at + 66%, + 22% and + 43%, respectively; cv2 shows statistically dif-
ferent, poorer performances (27, 40 and 63 crossings), although still better with respect to 
the other treatments. As for glossy abelia, the cv2 cuttings treated with the 1250 mg L−1 
IBA dose already showed high values (198 crossings at 50 DAC). In contrast, when the 
same dose was applied to cv1, only 71 crossings (-64%) were obtained. 

Table 5. Number of root crossings per cutting in wild sage and glossy abelia at 20, 35 and 50 DAC, 
according to IBA concentration and cultivar. 

TMTS 

Root Crossings (No.) 
DAC 

20 35 50 20 35 50 
L. camara A. x grandiflora 

IBA (mg 
L−1) 

cv1 cv2 cv1 cv2 cv1 cv2 cv1 cv2 cv1 cv2 cv1 cv2 

0 
7  

± 1 e 
10  

± 1 e 
41  

± 3 b 
21  

± 1 d 
56  

± 4 b 
31  

± 1 c 
21  

± 2 c 
12  

± 3 c 
15  

± 1 e 
23  

± 2 d 
40  

± 7 d 
117  

± 7 b 

1250 
11  

± 1 e 
16  

± 1 d 
23  

± 1 d 
25  

± 1 d 
54  

± 4 b 
46  

± 2 b 
27  

± 5 c 
70  

± 5 a 
37  

± 2 c 
64  

± 3 a 
71  

± 6 c 
198  

± 4 a 

2500 
19  

± 1 cd 
22  

± 1 c 
35  

± 2 bc 
29  

± 1 cd 
88  

± 7 a 
56  

± 1 b 
20  

± 5 c 
51  

± 5 b 
58  

± 4 ab 
49  

± 3 bc 
62  

± 4 c 
73  

± 5 c 

5000 
45  

± 3 a 
27  

± 2 b 
49  

± 3 a 
40  

± 2 b 
90  

± 8 a 
63  

± 2 b 
43  

± 2 b 
19  

± 3 c 
45  

± 5 bc 
63  

± 6 a 
66  

± 7 c 
210  

± 7 a 
L. camara cultivars: cv1 ‘Little Lucky’, cv2 ‘Yellow; A. x grandiflora cultivars: cv1 ‘Canyon Creek’, 
cv2 ‘Edouard Goucher’. Within each sampling date (20, 35 and 50 DAC) and for each taxon, data 
followed by the same letter are not significantly different at p ≤ 0.05 according to the Student New-
man–Keuls (SNK) test. Data shown are means ± SE of three replicates. 
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When the proportions of total root length were placed into different diameter classes, 
in wild sage, compared to all other concentrations, cuttings treated with 5000 mg L−1 IBA 
had a significantly higher proportion in the very fine root diameter class (0–0.5 mm) at 35 
DAC (Figure 3C). Cuttings treated with 2500 and 5000 mg L−1 IBA showed a higher pro-
portion of total root length in the very fine root diameter class (0–0.5 mm) at both 20 and 
50 DAC (Figure 3A,E). 

 
Figure 3. Total root length distribution (%) of wild sage (A,C,E) and glossy abelia (B,D,F) in three 
diameter classes, evaluated at three sampling dates, as effect of four IBA concentration. Vertical bars 
with different letters means significant differences according with S.N.K. test, p ≤ 0.05 for each class 
root diameter. Data shown are means ± SE of three replicates. 

In glossy abelia, most total root length proportions fell in the very fine (0–0.5 mm) 
diameter class, and distinct patterns were observed among IBA concentrations at 20  
(Figure 3B), 35 (Figure 3D) and 50 DAC (Figure 3F). In the very fine (0–0.5 mm) diameter 



Plants 2022, 11, 290 9 of 14 
 

 

class, total root length values were significantly higher at 1250 mg L−1 IBA than at other 
concentrations. For large root diameter classes (>1.0 mm), different IBA concentrations 
yielded similar proportions of total root length at the three sampling dates (Figure 3B,D,F). 

3. Discussion 
This study aimed to optimize wild sage and glossy abelia autumn stem cutting prop-

agation protocols, using image analysis to assess the effects of different IBA concentra-
tions and cultivars on AR quality. Woody species are clonally multiplied through different 
methods, including root cuttings [4]. Cutting success, entailing quality AR formation [36] 
with high rooting percentage, depends on numerous factors such as cutting type, envi-
ronmental conditions, nutritional levels of the stock plant, rooting medium and phytohor-
mone application [37,38]. Several studies have highlighted the importance of auxin use in 
improving AR formation and maximizing production efficiency in woody species with 
high market demand [5,39–41]. Ornamental nurseries frequently apply IBA to cuttings, 
although not in concentrations tailored to the specific shrub species or cultivar; this leads 
to increased costs and often poor-quality root cuttings. Depending on the species and the 
cultivars, in accordance with [42–44], auxin treatment is known to have positive effects on 
rhizogenesis at specific concentrations. Understanding which is the most effective IBA 
concentration in terms of forming quality ARs is crucial to the cutting propagation indus-
try [45]. 

Under our experimental conditions, wild sage and glossy abelia stem cuttings har-
vested in early autumn had high rooting percentages at 20 DAC, irrespective of exogenous 
IBA treatment. These results agree with those of [46], who determined that polar transport 
of endogenous auxin from the apical meristem to the nodes of sunflower cuttings is suffi-
cient to stimulate AR formation without the addition of exogenous auxin. 

Few studies have compared the morphological quality of AR in wild sage and glossy 
abelia cuttings treated with different IBA concentrations. In general, our study suggests 
that the effects of IBA concentrations differ from one cultivar to the other in each taxon. 
The interaction between IBA concentration and cultivar was significant for root number 
(Table 1). Our data show that the application of root stimulant can have a positive effect 
on the number of roots per cutting; however, while the 5000 mg L−1 concentration im-
proved the number in both wild sage cultivars, the effect on glossy abelia cultivar 2 was 
38% better (27 roots per cutting) than in glossy abelia cv1. Similar findings were reported 
by Dawa et al. [47] who found that when treated with 1500 ppm IBA, the ‘First Red’ rose 
cultivar yielded the maximum root number (19.0), whereas the ‘Naranga’ cultivar yielded 
the minimum root number (3.1). The differences between cultivars could be due to the 
genotype or the content of endogenous auxin in the cutting. IBA is one of the strong plant 
growth regulators in culture medium too for stimulating and increasing the number of 
roots. Samani et al. 2016, in Lantana showed that the highest number of roots was induced 
in MS media with 0.25 mg L−1 IBA [48]. At 50 DAC, our results on AR morphology in wild 
sage (Figures 1A,B and 2A,B and Tables 4 and 5) show that in cv1, compared to cv2, the 
highest IBA concentration (5000 mg L−1) improves the quality, which is more than satis-
factory, for the character length (+105%), surface area (+53%), number of forks (+125%) 
and crossings (+43%). In contrast, at 50 DAC, applying a quarter of the maximum dose 
(1250 mg L−1) of IBA to glossy abelia cv2 yields root lengths that was double that of cv1 
(Figure 1C,D). At 1250 mg L−1 IBA, cv2 also performs better than cv1 with respect to root 
surface area (+28%, Figure 2C,D), number of tips (+139%, Table 3), forks (+170%, Table 4) 
and crossings (+178%, Table 5). Previous research [49,50] has shown that, in some species 
and cultivars, auxins stimulate root initiation but disturb root elongation at increasing IBA 
concentrations. In our experiment, cv1 cuttings of glossy abelia showed very poor AR 
quality when treated at concentrations higher than 1250 mg L−1. Our results agree with 
[51], that Veronica pusanensis showed a similar tendency at high IBA concentrations (0.5 
and 1.0 mg L−1). Under our experimental conditions, it could be concluded that IBA influ-
enced root diameter too, although in a different way in both taxa (Table 2); similar data 
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were recorded by [4] in Cotinus coggygria ‘Kanari’ and Syringa vulgaris ‘President 
Grevy’. Our results therefore confirm that sensitivity to IBA dosage varies among species 
and their cultivars. As argued by [52], the root fineness (Figure 3), recorded image analysis 
techniques, could be a very important trait for the water and nutrient uptake in woody 
cuttings.4. Materials and Methods 
4.1. Plant Materials and Rooting Environment 

Semi-hardwood stem cuttings from wild sage and glossy abelia landscape stock 
plants were used as material for this study. Experiments were designed separately in the 
two studied taxa and they were conducted from 1 October to 20 November 2020 at an 
ornamental nursery farm situated in Monopoli (Bari, Italy, 40°54′19.1″ N, 17°18′21.4″ E; 66 
m above sea level) under an ethylene–vinyl acetate propagation greenhouse with 50% 
shading. 

For this study, 18 median cuttings were taken randomly from a single clonal mother 
plant, in each taxon and cultivar, making sure that they were disease-free, moderately 
vigorous, true-to-type, and uniform. Each cutting was 5–6 cm long and had three nodes. 
Leaves on the bottom half of the cuttings were removed, and the remaining leaves were 
cut back by 50%. The basal end of the stem cutting was cut at an angle to maximize the 
absorbing surface for effective rooting. It was dipped into the selected IBA concentration 
treatments (epidermal application to 10 mm of basal stem) and immediately planted into 
prepared seedling trays. 

To plant cuttings, sanitized plastic trays (104 holes and 3.5 cm in diameter) were filled 
with a high-quality commercial growing medium for cuttings (pH, 5.0–6.0; organic car-
bon, 35%; organic nitrogen, 0.8%; organic matter, 85%) consisting of a blend of perlite and 
brown and blond Sphagnum peat. The medium was well pressed in the cells and watered 
until saturation. Cuttings were treated and immediately planted into holes punched into 
the growing medium. Planted trays were transferred into a rooting greenhouse, treated 
with a systemic fungicide (Propamocarb) and then covered with nonwoven fabric for four 
days to reduce abiotic stress. 

Rooting greenhouse environmental parameters were monitored: air temperature 
ranged from 12 °C (minimum night temperature) to 20 °C (maximum day temperature); 
the seedbeds (bottom heating) were heated to a temperature of 18 ± 1 °C, and a 60 s misting 
was scheduled every 20 min from 8 a.m. to 3 p.m. for the duration of the experiment. 

4.2. Experimental Design 
For both taxa, the treatments were: 

(i) Four IBA concentrations: 0 (control), 1250, 2500 and 5000 mg L−1 (Sigma, St. Louis, 
MO, USA); control (0 mg L−1 IBA) cuttings were soaked in distilled water; 

(ii) Two cultivars: ‘Little Lucky’ (marked as cv1) and ‘Yellow’ (cv2) from Lantana and 
‘Canyon Creek’ (cv1) and ‘Eduard Goucher’ (cv2) from Abelia. 
Treatments were delivered in randomized complete block design and 24 experi-

mental units (4 concentrations x 2 cultivars x 3 replicates). Each experimental unit con-
sisted of eighteen cuttings (n = 432 cuttings from each taxon). 

4.3. Rooting Ability Measurements 
The root number (roots ≥ 0.5 cm length) per cutting was determined at 20 DAC. Root-

ing and mortality rates (%) were assessed at the end of the rooting period (50 DAC). The 
rooting rate (%) was calculated as the number of cuttings with AR per total number of 
cuttings × 100. Percentage data were subjected to arcsine square root transformation be-
fore ANOVA analysis. 
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4.4. Root Image Analysis 
To analyze the quality of the root system, samples were taken at three different times: 

20, 35 and 50 DAC. Six cuttings per experimental unit were taken on each sampling date. 
The substrate was gently washed away from the roots using first a hot bath and then a 
brush. The roots were scanned at 400 dpi using an Epson v700 Perfection (Japan) scanner. 
The captured images were then processed using image analysis software (WinRHIZO v. 
2005b©, Regent Instruments Inc., Québec, QC, Canada, www.regentinstruments.com(ac-
cessed on 27 November 2021 ).) to determine total root length, root surface area, root av-
erage diameter, root tips, root forks and root crossings. The distribution of root length 
among the following root diameter classes was also determined [53]: very fine (VF, 0–0.5 
mm), fine (F, 0.5–1 mm) and large (L > 1 mm). 

4.5. Statistical Analysis 
Two-way ANOVA was performed within each species for each sample date (20, 35, 

and 50 DAC) to test the effects of IBA concentration (IBA), cultivar (CV), and IBA x CV 
interaction on rooting ability, the number of roots and their morphological features. 

All the above data analyses were performed using SAS version 9.3 statistical software 
(SAS, 1999); treatment means were separated by the S.N.K. (Student Newman–Keuls) test 
(p ≤ 0.05). 

5. Conclusions 
This study investigated the effects of different IBA concentrations on the quality of 

cuttings from two cultivars of wild sage and glossy abelia. Results, which can be used to 
optimize propagation protocols, indicate that: 
(i) Stem cutting propagation in early autumn is possible; 
(ii) IBA application is not needed to enhance rooting ability; 
(iii) IBA concentration is an important factor determining the best overall AR quality in 

both taxa; 
(iv) In wild sage cv1 (‘Little Lucky’), 5000 mg L−1 IBA improved AR quality by increasing 

root number, length, surface area and number of forks and crossings; cv2 (‘Yellow’) 
did not perform as well as cv1; 

(v) In glossy abelia cv2 (‘Edouard Goucher’), 5000 mg L−1 IBA increased the root number, 
but only 1250 mg L−1 IBA was needed to improve AR quality; cv1 (‘Canyon Creek’) 
did not perform as well as cv2. 
The results of this study, which confirm that sensitivity to IBA dosage varies among 

species and their cultivars, could be relevant to the production of high-quality cuttings in 
the commercial nursery industry. 
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